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A prescription is given for conservatively integrating generalized hydromagnetic equations 
using flux-corrected transport (FCT) techniques. By placing the magnetic-held components at 
the interface locations of the finite-difference grid, the tield is kept divergence-free to within 
machine roundoff error. The use of FCT techniques allows an integration scheme of high 
accuracy to be employed, while the numerical ripples associated with large dispersion errors 
are avoided. The method is particularly well suited for problems involving magnetohydro- 
dynamic shocks and other discontinuities. 

1. INTRODUCTION 

Flux-corrected transport (FCT) Cl-91 was originally conceived, and has been 
developed over the years, as a method for accurately solving the conservation equa- 
tions of Eulerian hydrodynamics without violating the positivity of mass and 
energy, particularly near shocks and other discontinuities. This is achieved by add- 
ing to the equations a strong numerical diffusion, which guarantees the positivity 
of the solution, followed by a compensating antidiffusion, which reduces the 
numerical error. The crux of the FCT method lies in limiting (“correcting”) the 
antidiffusive fluxes before they are applied, so that no unphysical extrema are 
created in the solution. The effect of this flux-correction procedure is to provide as 
accurate a solution to the original equation as is consistent with maintaining 
positivity and monotonicity everywhere. 

My objective in this paper is to give a prescription for integrating the 
hydromagnetic equation of magnetohydrodynamics (MHD) using FCT techniques. 
The application of FCT to this problem has been considered previously [2, lo], 
but no generally satisfactory procedure for correcting the antidiffusive fluxes, while 
simultaneously keeping the magnetic field divergence-free, has heretofore been 
established. Placing the discrete values of the field components at the interface loca- 
tions of the spatial grid enables the divergence-free character of the magnetic field, 
as expressed by the discrete integral form of Gauss’s law, to be simply and strictly 
preserved [ 11, 121. The monotonicity constraint of FCT, on the other hand, cannot 
be strictly enforced without producing an excessively diffuse solution. I describe a 
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flux-corrector which constructs the total antidiffusive flux as the sum of corrected 
partial fluxes. Each component of the magnetic field contributes a partial 
total, and its contribution is limited independently of those due to the 
components. The solutions so obtained have remained well behaved eve 
numerical test cases. 

An efficient, accurate algorithm which uses these techniques to integr 
generalized hydromagnetic equations in two spatial dimensions is described in. 
Appendix. The phase and amplitude errors of the solution are fourth order in the 
grid spacing at long wavelengths. I present and discuss some numerical exam 
using this new FCT algorithm and compare its performance with those of an 
alternative monotone scheme [lZ], which solves directly for the magnetic fieid, 
and a companion FCT algorithm [13], which solves for the vector potential. 

2. TECHNIQUES 

The conservation equations of Eulerian magnetohydrodynamics take the generai 
form 

where p is a fluid variable (mass, momentum, or energy density) being time-advan- 
ced, v is the fluid velocity, B is the magnetic field, and si , s2, s3, s4, and s5 are 
source terms. In the absence of sources, Eqs. (1) reduce to the continuity and idea! 
hydromagnetic equations, 

g+V.(pv)=o, 

dB 
t=vx(VXB). 

The integral conservation relations corresponding to Eqs. (2) are 

(2) 

where in the first integral V is any volume of fluid bounded by the closed surface 
S, and in the second, S is any (open) surface bounded by the closed contour C. 
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The geometry of a finite-difference representation of Eqs. (1) is shown in Fig. 1. 
It has long been recognized that the continuity equation can be integrated conser- 
vatively by evaluating the flux densities pv at the interfaces of the spatial grid and 
using a discrete representation of the integral relation (3a). For example, a forward 
differencing of the time derivative and an explicit treatment of the spatial 
derivatives in two dimensions lead to 

([PC- PO1 Vij dt-L = (PoUxA.x)i- IQ- (PoUxA.x)i+ I!Zj 

+ W++J~- 1.‘2 - W+$)ij+ l/2> (4) 

where p” and pC are the values of the fluid variable before and after the convection, 
respectively, V is the cell volume, A, and A,: are the areas of interfaces normal to 
the x and y directions, and A? is the time increment. In a summation of the results 
(4) over any collection of cells in the system, the contributions of fluxes evaluated 
at the common, internal interfaces cancel pairwise. The integral conservation rela- 
tion (3a) in its discrete form then holds for every subvolume of the system. This 
result also holds for the generalized continuity equation (la), if only conservative 
sources sq are present. 

A conservative integration of the hydromagnetic equation is similarly effected 
[ 11, 121 by placing the components of the magnetic field at the cell interfaces, as 
shown in the right panel of Fig. 1. The flux densities v x B are evaluated at the cell 
edges, and a discrete representation of the integral conservation relation (3b) again 
is used. If u, and B, both vanish, discretizing in time as before yields 

(CB’,-BZI A,)i+~;Zjdt-‘=(Ct’l’B~-V,B~l Lz)i+ 12-1;~ 

- (Cu,.B’:- oy L)i+ 1;2j+ 1.‘2> 

(CBf, - q1 A,,)ij+ 112 At-‘=([uxB~-~yB~] L=)i-l/2j+1;2 

(5) 

-(C”xB~-uv,BZ1 L;)i+1;'2j+1:'23 

I / / / 
/I J 

/ Bz i+ljk * 2 
/ 

FIG. 1. Geometry of the finite-difference representations of the generalized continuity equations (left 
panel) and hydromagnetic equation (right panel) of conservative, Eulerian magnetohydrodynamics. 
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where B” and B” are the field values before and after the convection, and E, is the 
length of an edge oriented in the z direction. Due to the pairwise cancellation oE 
fluxes at common edges, the integral relation (3b j in its discrete form holds for any 
surface in the system. This result is also true of the generalized hydroma~nc~~c 
equation (lb), whose conservative source term s5 is likewise evaluated at the cell 
edges, For the special case of a closed surface, all of the edge fluxes cancel and the 
solutions obey the discrete equivalent of 

a r 
zit 9 B.dS=O. (6; 

Consequently, if Gauss’s law in its discrete integral form is satisfied by the field 
configuration initially, it is satisfied for all time. 

Thus, the conservation properties of both the generalized continuity ani? 
hydromagnetic equations (I) can be simply and strictly imposed on their discrete 
solutions by a judicious choice of the finite-difference representation used to solve 
them, A new algorithm for solving the hydromagnetic equation which exploits this 
representation in two spatial dimensions is described in the Appendix. The algo- 
rithm employs the techniques of flux-corrected transport (FCT) [I-S], which hav$e 
been used extensively to solve problems in ordinary hydrodynamics. As noted 
originally by Book et al. 121, some difficulties arise in applying FCT to the 
hydromagnetic equation These will now be addressed and a general resolution of 
them proposed. 

The basic procedure for solving convective transport equations using FCT can be 
described as follows: 

(1) Calculate a low-order-accurate but positive-definite solution (p’, 
adding a strong numerical diffusion term to the equation. 

(2) Calculate antidiffusive fluxes F” which, if applied directly, would prod.uce 
-order-accurate but potentially nonpositive and/or nonmonotonic solution 

(3) “Correct” these antidiffusive fluxes, i.e., reduce them in magnitude, so that 
no unphysical extrema are created in the solution. 

(4) Apply the corrected fluxes i@ to the low-order solution to obtain a more 
accurate, but still monotonic, final solution (ti9 Bf) 

The flux-correction step (3) is the key to the success of FCT. Zalesak’s [S, 6] for- 
mulation of the flux-corrector for generalized continuity equations is the following: 

(a) Establish the permitted extremal values of the solution in each cell. In 
two dimensions, e.g., a suitable choice might be 

with analogous expressions used to calculate pr”. 
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(b) Cancel those antidiffusive fluxes that are directed downstream with 
respect to the local gradient, i.e., which act to smooth the profile rather than 
steepen it. Thus, set 

and 

(8) 

or 

F’: i+ &P;- of- lj) < 0. 

Such fluxes contribute to the formation of dispersive ripples, degrading the quality 
of the solution. 

(c) Calculate the total inward- and outward-going antidiffusive fluxes for 
each cell, 

Pi = max(F: ip 1,,2j, 0) - min(Ff: i+ 1,,2j, 0) 

+ max(F,4 ij- li2, 0) - min(f’.~ ii+ 1,,2, 01, 

P; = max(FI: i+ I,IjT 0) - min(F’: i- 1/2j, 0) 
(9) 

+ max(F; ii+ 1l2, 0) - min(F,4 ii- 1;2, 0). 

(d) Determine the maximum fractions of these fluxes which can be applied 
without causing overshoots or undershoots in the solution, 

= min( 1, Q;lP;)> 
= min( 1, Q, If’,; ), 

(10) 

where the maximum allowed fluxes into and out of the cell, respectively, are 

Q; = (py -pi) Vi,, 

Q, = (p!,- py) V,. 
(11) 

(e) At each interface, find the minimum fraction which prevents both an 
overshoot in the cell downstream from the flux and an overshoot in the cell 
upstream, viz., 

Cx i+ 1:2j = 
i 

min(Ri+, yr R;), if Fz i+ li2j 2 0; 
min( RG , R,; lj), otherwise. (12) 

(f) Finally, reduce the antidiffusive flux at the interface by this fraction, 

‘tZ i+ 1:2j = C.r i+ 1/2jFZ i+ l;2j’ (13) 
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In principle, Zalesak’s flux-corrector for the continuity equation could be applied 
straightforwardly to the integration of the hydromagnetic equation. Steps (a)-(c) 
would be performed at each interface for the associated normal field component; 
and (d) and (e) at each edge, with the minimum taken over the upstream and 
downstream interfaces along both coordinate directions simultaneously. The sola- 
rion which results is guaranteed to be monotonic, but it also is excessively diguse, 
in practice. The difficulty originates in the mathematical form of the an~idiff~~sive 
fluxes, the dominant, velocity-independent portion of which can be written symboli- 
cally as (see the Appendix) 

It is used to evolve the field components according to 

(14) 

The first contributions on the right side of Eqs. (1.5) are clearly “antidiffusive” in 
character. The second contributions are not, unless the antidiffusivities u are 
spatially uniform and the derivatives can be interchanged. In that case, V . B = 9 can 
be used to obtain the antidiffusion equations 

Neither condition generally holds in an FCT calculation, however, particularly the 
interchange of derivatives, since the flux Fz at each edge must be limited independ- 
ently. Thus, the effect of the second contributions in Eqs. (15) may not be “antidif- 
fusive” at all, and they have the potential to introduce severe numerical errors into 
the final solution (cf. Book et al. [2]). Put another way, there is no necessary reia- 
tionship, in sign or magnitude, between the two contributions to the flux Fz in 
Eq. (14), and thus in their effects on the field components, They may oppose or 
reinforce each other, or one may overwhelm the other. In the latter case especially, 



148 C. RICHARD DEVORE 

the flux-corrector would sharply reduce the flux to guard against generating or 
amplifying extrema in the smaller field component, producing a locally low-order, 
diffusive solution. 

A considerable amount of experimentation has culminated in an alternative flux- 
corrector for the hydromagnetic equation which circumvents these difficulties. It is 
not as restrictive as that for the continuity equation, but still approximately enfor- 
ces the monotonicity constraint on the magnetic field. The modified procedure is as 
follows: 

(a) At each interface, calculate low-order solutions and establish extrema for 
the normal component of the field, ignoring any contributions by the transverse 
field component(s). In two dimensions, e.g., the extrema for B, might be calculated 
from 

fix i+ 1;2j = max(B: i+ 1/2j’ Bf i+ 1/2j), 

BFY+ 1;.2j=max(‘, i+ I,o- 1, Bx i+ 1/2j’ 8, i+ 1/2j+ 11, 
(17) 

where Bt is the low-order solution calculated with only B,-dependent terms 
included, and from analogous expressions for B~~+Ij2j. The extrema for B, would 
be established similarly. 

(b) Cancel the downstream-directed, partial antidiffusive fluxes for each field 
component separately, 

and 

F~j+l!.2j+li2(B~i+1:2j+2-Bf;Xi+1/2j+l)<O (18) 

01 

FzUX+1.‘2j+I:2(B.~i+1~2j-B~i+li2j-l1)<0, 
where only the B,-dependent terms are included in the antidiffusive fluxes F;-x. 

(c) Calculate the inward- and outward-going partial antidiffusive fluxes for 
each interface, 

Plx++l!2j=max(Fqxi+li2j~1:2, O)-min(Fqx+l:,j+1,2, O), 

P~~~/2j=max(F~xi+ l/2j+ 1;2, 0) - min(f’Yi+ 1’2i--1,2, 0). 
(19) 

(d) Determine the maximum fractions of the partial fluxes which can be 
applied without causing overshoots or undershoots in the normal field component, 
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where the maximum allowed fluxes into and out of the interface, respectively, are 

(e) At each edge, find the minimum fraction which prevents both an over- 
shoot in the downstream interface and an undershoot in the upstream interface, for 
each field component separately, 

c.T i+I,2j+:,2= min(R~~~I~2j+1, R-,‘+i,‘Zj)’ 

! 

if -?;+I.~~+I 220: 

mWRl”,fIi.2.i, RTyI:,j+ I), otherwise. 
(22) 

(f) Reduce the corresponding partial antidiffusive fluxes by these fractions, 
and combine the corrected partial fluxes to obtain t e total corrected antidiffusive 
flux, 

For the purpose of obtaining the corrected antidiffusive fluxes, each component 
of the magnetic field is treated separately from the others. This avoids the problem 
encountered with the hydrodynamic flux-corrector, since each of the partial fluxes 
being corrected has a clearly “antidiffusive” effect on its associated field component. 
That the total fluxes constructed from these independently corrected, partial ftuxes 
should yield a well-behaved final solution can be argued as follows. First, in regions 
where the velocity and magnetic fields are slowly varying, the antidiffusivities ,U and 
correction coefficients C will be roughly uniform, so the interchange of numerical 
derivatives and thus Eqs. (16) will be approximately valid. In that case, the antidif- 
fusive contributions by the transverse field components will just cancel a fraction of 
their diffusive contributions to the low-order solution B’. Neither of these contribu- 
tions is considered by the flux-corrector, so the net effect will be the benign apphca- 
tion of some additional, residual smoothing to each field component. Second, .a: 
a line or surface discontinuity, such as a shock front, the gradients along the 
coordinate normal to the discontinuity, x,, are much greater than those along the 
transverse coordinate, x,. Consequently, the ordering 

will apply. Whatever correction of the partial antidiffusive flux Fz’ is necessary to 
ensure monotone behavior by its associated field component, B,, can be applied 
without imposing a similarly abrupt change on the normal field component, 
the same time, the partial flux F; depends upon transverse gradients in the velocity 
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and magnetic fields and so makes only a small contribution in any event. Thus, 
situations in which lCJB,/8x,l 9 las,/~!?x,l, precisely those that the hydrodynamic 
flux-corrector would deal with most restrictively, instead are handled effectively and 
accurately. 

It is a straightforward matter to generalize this procedure to three spatial dimen- 
sions. In that case, the search for the extrema of B, i+ ijZjk in Eq. (17) extends over 
the indices j and k of both transverse coordinates, with analogous formulae for By 
and Bz. The criterion of Eq. (18) for cancelling the downstream-directed, partial 
antidiffusive fluxes Fz-‘i + 1,‘2j + l,Zk, based on the variation of BF along ~7, is com- 
plemented by an identical condition on FTi+ iizjk+ I,Z with respect to the variation 
of Bf;” along Z. Both pairs of modified fluxes, Fyi+ 1,2jk+ ij2 and Fzxi+ ilzjk iIlk, then 
contribute to the total inward- and outward-going fluxes PT+ ilZjk in Fig. (14). After 
the allowed interface fractions R;+ 1,2jk are determined from Eqs. (20) and (21) the 
correction factors CZ i+ 112j+ l,Zk ad CG i+ l,Qjk+ 1j2 are calculated from Eq. (22) and 
its analogue. Finally, the total corrected antidiffusive flux F; i+ 1,2jk+ 1,,2 is obtained 
by combining the partial fluxes F,4 and e contributed by B, and BZ, respectively, 
as is done for Pq i+Ij2j+1,2k in Eq. (23). The flux Ft ii+,12k+ 1,2 is calculated 
similarly. 

3. EXAMPLES 

A flux-corrected transport algorithm for integrating generalized hydromagnetic 
equations in two spatial dimensions is described in the Appendix. I apply it here to 
some kinematical and dynamical problems of hydromagnetics. As an alternative to 
solving directly for the magnetic field, it is a common practice in MHD simulations 
to use a vector potential representation, 

B=VxA, (24) 

whence the generalized hydromagnetic equation (lb) becomes 

dA 
-=vxVxA+ss,. at (25) 

In two dimensions, only the component of the potential along the symmetry direc- 
tion is needed, and Eq. (25) can be reduced to 

where the flux function $ is a product of the symmetry component of A and a coor- 
dinate-system-dependent geometrical factor. The flux function is a convenient 
primitive variable, because algorithms for generalized continuity equations can be 
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modified to integrate advection equations such as Eq. (26). Aiso, it is a useful 
diagnostic since it can be shown that 

B.V$=O, jgj 

Le.. surfaces of constant * are magnetic surfaces. 
In the examples to follow, direct solutions of the ideal hydromagnetic equation 

(2) have been calculated using both the FCT field solver and an alternative 
monotone algorithm, the constrained transport (CT) scheme of Evans and awley 
[12]. They will be compared with each other and also with indirect solutions 
obtained by integrating Eq. (26) for the flux function, using a companion FCT fluid 
solver [13]. The discrete values of $ are placed at the cell edges (i+ l/2, /+ i/Z.), 
for consistency between the two calculations. The associated vector potential then 
is conservatively differenced to yield values of the magnetic-field components at thy: 
cell interfaces. 

The first test is the rigid rotation of a current-carrying cylinder, analogous to 
Zalesak’s [S, 61 slotted-cylinder test for fluid solvers. In Cartesian coordinates, the 
flux function and the symmetry component of the vector potential are identical, 
ii/ = AZ. Initial conditions for the calculation are shown in Fig. 2, The flux function, 
magnetic field, and current density within the cylinder are given by 

B,=LB,, 
r 0 

where (Y, #, z) is a cylindrical coordinate system centered on the cylinder of radius 
r. and peak field strength B,. A sheath of return current at r = r0 neutralizes the 
current carried in the interior, so that $, B,, and Jz vanish for r > Ye. The cylinder 
rotates rigidly in the counterclockwise direction at an angular rate w, whence 

v, = -coy, v), = +wx, 

where the origin of the Cartesian coordinate system is placed on the axis of rotation. 
The calculations were performed on a 100 x 100 mesh, with the cylinder initially 
centered in the upper half plane and its radius set at 15 zones. The Courant numbe;- 
is 0.25, so that 1256 timesteps are required for one complete rotation. 

The solutions obtained by the FCT field and potential solvers and the CT field 
solver are shown in the upper, center, and bottom panels, respectively, of Fig, 3. 
The errors in the flux functions, calculated from 
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FLUX FUNCTION CURRENT DENSITY 

c 

INITIAL CONFIGURATION 

FIG. 2. The flux function $ = A; (left) and current density J= (right) for a rigid rotation test arc dis- 
played in their initial state. Only the 50 x 50 subdomain centered on the cylinder is shown, and the axis 
of rotation is marked by the solid dots. The flux function is contoured at 10 %, 20 %, . . . . 90 % of its peak 
initial value. The current density ‘is contoured at + IO%, *309/o, . . . . _ +90% of its initial interior value, 
with positive percentages represented by the solid lines and negative percentages by the dashed lines. 

are very small in the FCT cases, 6 % for the field solver, 4% for the potential 
solver, and 14% for the CT field solver. Although the field solvers clearly preserve 
the symmetry of the flux surfaces better, yielding the better qualitative appearance, 
their solutions are somewhat more diffuse, which accounts for their lower quan- 
titative accuracy. The truncation error of the CT algorithm is greater than that of 
the high-order FCT scheme, and that manifests itself in this quantitative com- 
parison. The errors in the magnetic fields are essentially identical for the two FCT 
solvers at 25%, and 45% for the CT solver. For the field solvers, the error reflects 
the difficulty in advecting a discontinuous function-the magnetic field at 
r = r,-using an Eulerian difference method. By way of comparison, an error of 
24% results when Zalesak’s slotted-cylinder test problem is solved using the FCT 
fluid solver [13]. For the potential solver, on the other hand, the error reflects the 
inaccuracies in the numerical derivatives of a smooth function-the vector poten- 
tial-which has been accurately time-advanced by a monotonic scheme. The latter 
error is further amplified in the higher derivatives, sufficiently so that the potential 
solver yields a current density that is less accurate than does the FCT field solver, 
by 90% to 79%. The error in the diffuse current profile of the CT solution, for 
comparison, is 91%. Both FCT solutions for the current density show local depres- 
sions inside the cylinder, but the potential solver by far produces the more severe 
fluctuations, including a reversal near the axis of symmetry whose amplitude 
exceeds 70% of the initial interior value. The current density produced by the field 
solver is both qualitatively and quantitatively superior, although it again suffers in 
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FLUX FUNCTION CURRENT DENSlTY II .I, >~In,,,~n~,,,-~>>m, 

m-_-_&2 i-&-_-____,____~ 

FCT FIELD SOLVE 

F, IL, 1,, I, ,I. _, ,, ,, ,~_, ,, ,,j 1 1, ,,, ,, ,, ,, ,, , ,i 
CT FIELD SOLVER 

FIG. 3. The passively advected flux function + = -4, (left) and current density Jz (right) zre tlisghyed 
in their final states produced by the new FCT solvers for the magnetic field (top) and vector potential 

(middle) and by the CT solver for the magnetic field (bottom ). The contour 1eveTs are the same as those 

in the display of the initial state, Fig. 2. 
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the error comparison because its profile is not as sharp. The CT scheme smooths 
the current density even further, yielding the only monotonic profile, but the lowest 
quantitative accuracy, among the three solvers. 

The second test is the self-similar spherical expansion of a strong shock wave and 
trailing magnetic bubble out of the gravitational well of a star, analyzed by Low 
[ 14, 151. In this dynamical problem, the self-similar character of the expansion is 
maintained by a balance between pressure and magnetic forces in the colatitudinal 
direction and between pressure, magnetic, gravitational, and inertial forces in the 
radial direction. The simplest expansion is an inertial flow, whence 

v,(r, 0, t) = r/t. 

At time to, the shock and its associated contact surface coincide at radius r,; at 
later times, their positions are given by 

r,(t) t ‘I6 -= - 
r0 0’ to 

r,(t) t -= - 
0 

7 
r0 to 

respectively. A magnetic bubble is embedded behind the contact surface, and the 
flux function * = r sin 0A, initially satisfies 

ti(r, e, to) = :0(r2 - r)(r - rl) sin* & if r,<r<r,; 

3 otherwise, 

for rl =0.55ro and r,=0.95ro. The simulations were carried out for times 
2t, Q t < 5t,, on the spatial grid r. < r < 5r,, 0<6<n/2. The 600 timesteps used 
correspond to an average Courant number of about 0.25, and the grid spacing on 
the 100 x 100 mesh increased linearly with r and was uniform in 8. A predictor/ 
corrector integration method was used to time-center the source terms and achieve 
second-order accuracy in time. Finally, the gravitational parameter GMtz/ri was 
assigned the special value 3, for which both the mass density and the pressure are 
continuous across the contact surface, and the flux constant ijo was chosen to yield 
a minimum plasma /I (ratio of plasma to magnetic pressure) of unity. 

The flux surfaces at the initial and final times are shown in the upper panel of 
Fig. 4. Shown in the center panel are the solutions produced by the FCT field and 
potential solvers, and shown in the lower panel is the CT solution. They are quite 
similar, both qualitatively and quantitatively, although the field solvers yield 
noticeably smoother flux surfaces. The errors in the flux function are nearly identi- 
cal for the three solvers, at 8-9 %. The errors in the field components also are essen- 
tially equal for the FCT solvers (20%), and the error for the slightly more diffuse 
CT solution is somewhat larger (25%). As in the passive advection test, the FCT 
potential solver yields a less accurate current density than the FCT field solver, by 
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FLUX FUNCTION 

INITIAL CONFIGURATION FINAL G~NFIG~~AT~~N 

FCT FIELD SOLVER 

CT FIELD SOLVER 

FIG. 4. The flux function $ = r sin f3A, for a self-similar spherical expansion of a magnetic b&ble 
embedded in a stellar envelope is displayed, in its initial and exact final states (top) and in the final states 
produced by the FCT solvers (middle) and the CT solver (bottom). The domain, r0 < r 6 5r,, 0 < 6 < rrZ 
is shown as projected against the sky; the shaded region is r < rn. The flux function is contoured at 13 %. 
20%. . . . . 90% of its peak initial value. 
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errors of 113 % to 88 %. Both solvers produce local current reversals in this 
problem, however-the potential solver at the 90% level and the field solver at the 
10% level. The smoother current density produced by the CT solver also is in error 
by 88%. Contour plots of the current densities in this problem are not shown 
because they are not very instructive; numerically generated small-scale structures 
dominate the current distribution within the magnetic bubble. 

4. DISCUSSION 

A conservative integration of the generalized hydromagnetic equation of 
magnetohydrodynamics is readily effected by defining the components of the 
magnetic field at the interfaces of the finite-difference grid. The convective and other 
fluxes whose application causes the magnetic field to evolve in time are defined at 
the cell edges. Because each such flux affects four discrete field values along two 
coordinate directions, the calculation is inherently multidimensional-an operator- 
split integration for the individual field components is necessarily nonconservative. 
This characteristic distinguishes the hydromagnetic equation from the continuity 
equation, which can be integrated as conservatively, though not as accurately, in an 
operator-split approach as in a fully multidimensional formulation. 

To successfully apply FCT techniques to the integration of the hydromagnetic 
equation does require, however, that operator-splitting techniques be employed by 
the flux-corrector. The contributions of each field component to the antidiffusive 
fluxes must be computed and corrected individually, rather than jointly. Otherwise, 
the fluxes tend to be severely limited, producing a diffuse, inaccurate solution. The 
monotonicity constraint clearly cannot be strictly enforced by any flux-corrector 
which splits the antidiffusive fluxes in this way. Nevertheless, the numerical 
examples demonstrate that an accurate solution can be obtained, far superior in 
particular to that provided by either the low- or high-order scheme used alone. 

The FCT field solver holds a small advantage over both the FCT potential solver 
and the constrained transport (CT) scheme [12] in the quantitative accuracy to 
which the flux surfaces and field strengths are reproduced, in the numerical tests 
discussed. Its solutions also possess superior symmetry and smoothness properties 
and the quantitative accuracy of its electric-current distributions is higher, certainly 
by comparison with the potential solver, though only marginally so with respect to 
the CT field solver. Contrary to what might be expected, in the dynamical tests 
cited the differences in the accuracy of the current distributions does not translate 
into substantially different flux-surface or held-strength errors. This outcome may 
be due to the rather high plasma /I and short elapsed time in these simulations, in 
which the Lorentz force does not play a dominant role and differences between the 
two solutions do not accumulate over many timesteps. In lengthy simulations of the 
evolution of low-p plasmas, on the other hand, the direct solution for the magnetic 
field may be more clearly preferable. 
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It should be kept in mind that using FCT to evolve the magnetic field in an 
calculation generally will produce some dissipation of magnetic flux. T 

numerical diffusion in the scheme acts much like a physical resistivity. Prime dis- 
sipation sites are the locations of discontinuities in the field, i.e., current sheets, 
where the flux-corrector may severely limit the antidiffusive fluxes to keep the solu- 
tion monotonic. The rate of dissipation is determined by the amount of flux 2orrec- 
tion that is done, and thus depends sensitively upon the details of the field and flov~ 
patterns and upon the rule for establishing the solution’s allowed extrema. A 
generally useful rule was given in Eq. (17) and use in the numerical examples in 
this paper. but other, equally well motivated criteria could be imposed instead (cf. 
[5]). In any case, the less restrictive is the rule used; the lower is the dissipation 
rate, but the noisier are the solutions that result. 

The developments of flux-corrected transport described in this paper were 
motivated by an interest in numerical simulation of MI-ID shocks and blast waves 
and general supersonic, magnetized flows. For these applications, the dissipation 
inherent in the scheme is used to advantage, to prevent the formation of unphysical 
ripples in the vicinity of discontinuities in the magnetic field. For application to 
other problems, such as the development of MHD instabilities. evolution of 
turbulence, or basic studies of magnetic reconnection, t e suitability of FCT 
depends upon several factors. These include the accuracy of the high-order scheme, 
which governs the dependence of the minimum dissipation rate on the grid spacing 
and timestep; the specifics of the flux-corrector, which determines the amo-unt of 
dissipation that is retained, as discussed above; and the spatial and temporal resolm- 
tion employed in the calculation, which finally fix the numerical dissipation rates. 
In principle, the methods described herein could be used to investigate any of these 
magnetohydrodynamic phenomena, although alternative methods may be more 
ideally suited for certain applications. 

APPENDIX 

I present here an efficient, accurate algorithm for integrating the generalized 
hydromagnetic equation of two-dimensional, compressible magnetohydrodynamics. 
This algorithm employs the flux-corrected transport techniques developed pre- 
viously for multidimensional hydrodynamics, and extended in this paper to 
magnetohydrodynamical problems. In the course of the calculation, intermediate 
low-order solutions Bt and B$‘, to which only the B,- and &,-dependent fluxes 
contribute, respectively, are needed. These solutions are not divergence-free, but 
they are used solely to correct their associated partial antidiffusive fluxes Fq” and 
Fz-V. After correction, these partial fluxes are combined to obtain the total antidif- 
fusive flux Fp. which in turn is used in the final step to generate the divergence-free 
solution B, . 



158 C. RICHARD DEVORE 

The calculation consists of convection, diffusion, and antidiffusion stages. In the 
convection stage, there results 

BZ i+l!ljAx i+1/2j=BZ i+l/zjAx ;+1;2j-FZ i+1/2jpl,2+Ff i+l/2j+1/22 

Bz i+l/zAy u+1;2=By g+l;zA,v v+112+J’f ipl/2,i+1/2-f’Z i+lc2i+1;2’ 

The convective fluxes due to B, and B,. separately and jointly are given, respec- 
tively, by 

FY;+ t/2j+ 10 = Bf: it lizi+ 1:2L- r+l/2j+1!2V~~ i+1.‘2j+1/2 At, 

p-J’. 
z rf 1/2j+ 1!2 = B; i+1/2j+l;2L z *+ li2jt 1:22)x i+ l:Zji 1.‘2 At, L42) 

FS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

where the edge magnetic fields are calculated as the averages 

4 i+I/2j+1/2=8BZ ;+1/2j+BZ i+l/2j+l), 

BJs i+l/2j+li2= %By ii+ 1,~ + BJs i+ lj+ 1;2). 

The diffusion stage ensures the monotonicity of the low-order solution, 

where the diffusive fluxes are given by 

f’Fi+1/2j+1,‘2=vy.v ;+lc2j+li2(BZ ;+1!2j-B: ;+l/zj+l)Ax i+I/zj+1/2, 
f’$‘. 

L I+ 1/2J+ 112 ="xx ;+1/2j+l;.z(Bf: q+l,‘2-B4q ;+lj+l/2)Ay i+l/Zj+-1/2> (A4) 

Fti+l/2j+ 1/2=F$‘i+li2j+I:1-F~~;:.+1/2jfl!2’ 

For the diffusion along x, the coefficient is 

“.cy ; + l.‘zj + 1/2 = i + $8: ; + 1;2j + l/2, (A5) 

the signed Courant number is 

1 
& 

+ -4.v i + lj + I,'2 > 
Vx i + 1/2j + l;lLz i+ 1!2j + I/I At, 
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and the edge area is the average 

where 

Ff i+1;2j+1;2=AtLr i+l,2j+l/Z~4, i+l:zi+l;z 

is the edge flux due to the source term s4. 
The high-order solutions are given by 

B’: ;+l:ljA.x i+1:2j=BI, i+l,ziAx i+l:~-J’z i+l2i-l;:-kFf il l,Zi+i 2, 

3; j,i+nA> v+1;2=B;, ii+l:A ii+,:z+F: i-l.zj+;;2-F: i+l ri+m. 
(AT) 

The partial and total uncorrected antidiffusive fluxes are 

The convected solution for B, at the !: interfaces is calculated as the average 

B:,, 1!2 = $(Byi- 1,2j+ Byi- 1:2j+ I + By;+ i 2i+ B:Ti; 1:7i+, i. .-1 

The coefficients for antidiffusion along J and the convected solution for B,. at the 
.=c interfaces are calculated similarly. 

The partial antidiffusive fluxes of Eq. (A8 ) now are corrected using the 
tion of Section 2, Eqs. (17-(22) for B,, and their analogues for B,.. These corrected 



160 C. RICHARD DEVORE 

partial fluxes are combined according to Eq. (23) and then applied to the low-order 
solutions of Eq. (A6), 

This is the desired solution to the generalized hydromagnetic equation (1). 
For the special case of uniform advection of magnetic flux over a uniform, car- 

tesian mesh, a complete error and stability analysis of the algorithm can be carried 
out. The phase and amplitude errors of the low-order solution, Eq. (A6), are second 
order in the grid spacing at long wavelengths, and the scheme is absolutely stable 
for Courant numbers I&,,,,1 < $. The errors in the high-order solution, Eq. (A7), are 
fourth order. 
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